369 research outputs found

    Degree Sequence Index Strategy

    Full text link
    We introduce a procedure, called the Degree Sequence Index Strategy (DSI), by which to bound graph invariants by certain indices in the ordered degree sequence. As an illustration of the DSI strategy, we show how it can be used to give new upper and lower bounds on the kk-independence and the kk-domination numbers. These include, among other things, a double generalization of the annihilation number, a recently introduced upper bound on the independence number. Next, we use the DSI strategy in conjunction with planarity, to generalize some results of Caro and Roddity about independence number in planar graphs. Lastly, for claw-free and K1,rK_{1,r}-free graphs, we use DSI to generalize some results of Faudree, Gould, Jacobson, Lesniak and Lindquester

    Dynamic approach to k-forcing

    Get PDF
    The k-forcing number of a graph is a generalization of the zero forcing number. In this note, we give a greedy algorithm to approximate the k-forcing number of a graph. Using this dynamic approach, we give corollaries which improve upon two theorems from a recent paper of Amos, Caro, Davila and Pepper [2], while also answering an open problem posed by Meyer [9]

    Upper bounds on the k-forcing number of a graph

    Full text link
    Given a simple undirected graph GG and a positive integer kk, the kk-forcing number of GG, denoted Fk(G)F_k(G), is the minimum number of vertices that need to be initially colored so that all vertices eventually become colored during the discrete dynamical process described by the following rule. Starting from an initial set of colored vertices and stopping when all vertices are colored: if a colored vertex has at most kk non-colored neighbors, then each of its non-colored neighbors becomes colored. When k=1k=1, this is equivalent to the zero forcing number, usually denoted with Z(G)Z(G), a recently introduced invariant that gives an upper bound on the maximum nullity of a graph. In this paper, we give several upper bounds on the kk-forcing number. Notable among these, we show that if GG is a graph with order nβ‰₯2n \ge 2 and maximum degree Ξ”β‰₯k\Delta \ge k, then Fk(G)≀(Ξ”βˆ’k+1)nΞ”βˆ’k+1+min⁑{Ξ΄,k}F_k(G) \le \frac{(\Delta-k+1)n}{\Delta - k + 1 +\min{\{\delta,k\}}}. This simplifies to, for the zero forcing number case of k=1k=1, Z(G)=F1(G)≀ΔnΞ”+1Z(G)=F_1(G) \le \frac{\Delta n}{\Delta+1}. Moreover, when Ξ”β‰₯2\Delta \ge 2 and the graph is kk-connected, we prove that Fk(G)≀(Ξ”βˆ’2)n+2Ξ”+kβˆ’2F_k(G) \leq \frac{(\Delta-2)n+2}{\Delta+k-2}, which is an improvement when k≀2k\leq 2, and specializes to, for the zero forcing number case, Z(G)=F1(G)≀(Ξ”βˆ’2)n+2Ξ”βˆ’1Z(G)= F_1(G) \le \frac{(\Delta -2)n+2}{\Delta -1}. These results resolve a problem posed by Meyer about regular bipartite circulant graphs. Finally, we present a relationship between the kk-forcing number and the connected kk-domination number. As a corollary, we find that the sum of the zero forcing number and connected domination number is at most the order for connected graphs.Comment: 15 pages, 0 figure

    Maximum Oriented Forcing Number for Complete Graphs

    Get PDF
    The \emph{maximum oriented kk-forcing number} of a simple graph GG, written \MOF_k(G), is the maximum \emph{directed kk-forcing number} among all orientations of GG. This invariant was recently introduced by Caro, Davila and Pepper in~\cite{CaroDavilaPepper}, and in the current paper we study the special case where GG is the complete graph with order nn, denoted KnK_n. While \MOF_k(G) is an invariant for the underlying simple graph GG, \MOF_k(K_n) can also be interpreted as an interesting property for tournaments. Our main results further focus on the case when k=1k=1. These include a lower bound on \MOF(K_n) of roughly 34n\frac{3}{4}n, and for nβ‰₯2n\ge 2, a lower bound of nβˆ’2nlog⁑2(n)n - \frac{2n}{\log_2(n)}. We also consider various lower bounds on the maximum oriented kk-forcing number for the closely related complete qq-partite graphs

    Current-induced instability of domain walls in cylindrical nanowires

    Full text link
    We study the current-driven domain wall (DW) motion in cylindrical nanowires using micromagnetic simulations by implementing the Landau-Lifshitz-Gilbert equation with nonlocal spin-transfer torque in a finite difference micromagnetic package. We find that in the presence of DW Gaussian wave packets (spin waves) will be generated when the charge current is applied to the system suddenly. And this effect is excluded when using the local spin-transfer torque. The existence of spin waves emission indicates that transverse domain walls can not move arbitrarily fast in cylindrical nanowires although they are free from the Walker limit. We establish an upper-velocity limit for the DW motion by analyzing the stability of Gaussian wave packets using the local spin-transfer torque. Micromagnetic simulations show that the stable region obtained by using nonlocal spin-transfer torque is smaller than that by using its local counterpart. This limitation is essential for multiple domain walls since the instability of Gaussian wave packets will break the structure of multiple domain walls.Comment: 5 pages, 6 figure
    • …
    corecore